Dissimilarity-Based Classification of Anatomical Tree Structures
نویسندگان
چکیده
A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment between the branch feature vectors representing those trees. Hereby, localized information in the branches is collectively used in classification and variations in feature values across the tree are taken into account. An approximate anatomical correspondence between matched branches can be achieved by including anatomical features in the branch feature vectors. The proposed approach is applied to classify airway trees in computed tomography images of subjects with and without chronic obstructive pulmonary disease (COPD). Using the wall area percentage (WA%), a common measure of airway abnormality in COPD, as well as anatomical features to characterize each branch, an area under the receiver operating characteristic curve of 0.912 is achieved. This is significantly better than computing the average WA%.
منابع مشابه
Steel Buildings Damage Classification by damage spectrum and Decision Tree Algorithm
Results of damage prediction in buildings can be used as a useful tool for managing and decreasing seismic risk of earthquakes. In this study, damage spectrum and C4.5 decision tree algorithm were utilized for damage prediction in steel buildings during earthquakes. In order to prepare the damage spectrum, steel buildings were modeled as a single-degree-of-freedom (SDOF) system and time-history...
متن کاملMixed Tree and Spacial Representations of Dissimilarity Judgments
Whereas previous research has shown that either tree or spatial representations of dissimilarity judgments may be appropriate, focussing on the comparative fit at the aggregate level, we investigate whether there is heterogeneity among subjects in the extent to which their dissimilarity judgments are better represented by ultrametric tree or spatial multidimensional scaling models. We develop a...
متن کاملComparison of Decision Tree and Naïve Bayes Methods in Classification of Researcher’s Cognitive Styles in Academic Environment
In today world of internet, it is important to feedback the users based on what they demand. Moreover, one of the important tasks in data mining is classification. Today, there are several classification techniques in order to solve the classification problems like Genetic Algorithm, Decision Tree, Bayesian and others. In this article, it is attempted to classify researchers to “Expert” and “No...
متن کاملComparison of Decision Tree and Naïve Bayes Methods in Classification of Researcher’s Cognitive Styles in Academic Environment
In today world of internet, it is important to feedback the users based on what they demand. Moreover, one of the important tasks in data mining is classification. Today, there are several classification techniques in order to solve the classification problems like Genetic Algorithm, Decision Tree, Bayesian and others. In this article, it is attempted to classify researchers to “Expert” and “No...
متن کاملخوشهبندی دادههای بیانژنی توسط عدم تشابه جنگل تصادفی
Background: The clustering of gene expression data plays an important role in the diagnosis and treatment of cancer. These kinds of data are typically involve in a large number of variables (genes), in comparison with number of samples (patients). Many clustering methods have been built based on the dissimilarity among observations that are calculated by a distance function. As increa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 22 شماره
صفحات -
تاریخ انتشار 2011